

Test & Inspection

OFL280 Handheld FTTx OTDR 取り扱い説明書

A Division of AFLTelecommunications

Test & Inspection

OFL280 Handheld FTTx OTDR 取り扱い説明書

A Division of AFLTelecommunications

 2008-2009, AFL Telecommunications, all rights reserved. OFL2-28-1000 Revision 1B. Specifications are subject to change without not

目次

安全上のご注意N	1
----------	---

セクション 1:

お客様ご相談窓口	1
セクション 2:	
0FL280 モデル	
推奨部品	

セクション 3:

セ

本体上部図	. 5
本機側面図(USB 、電源ポート)	6
前面パネル(ボタン、画面)	7
OFL280 の各ボタンについて	8
表示画面	. 10
メニュー画面	10
トレース画面	11
クション 4:設定方法	
測定モードの選択	12

I

14
15
16
.17
18
19
20
22
23
24
24
24
26
26

セクション 5: テストの実行と測定結果の表示

テストの開始と終了 27
テスト結果の表示 28
トレースページについて
イベントテーブルについて 32
イベントのアイコンとタイプについて33
インフォメーション画面について

セクション 6: テスト結果の保存と表示

ファイルの管理35
ファイルの管理 - フォルダ画面を表示するには 36
ファイルの管理 - ファイル画面を表示するには 37
ファイルの管理 - ページ保存
ページ保存で新規フォルダを作成するには40
特定のフォルダを開くには40
測定結果を保存するには40
測定結果を既存のフォルダに保存するには40
測定結果を新しいフォルダに保存するには40
ファイルを開くには(保存したテスト結果の再表示)41
ファイル、フォルダを削除するには
パソコンにファイルを転送するには41

セクション 7: メンテナンス

	洗浄				 	 	 43
	バッラ	テリーの)充電		 	 	 45
	修理と	:校正			 	 	 45
	バーシ	ション情	「報の	確認	 	 	 45
よくある	ご質問.				 	 	 46
仕様					 	 	 47
保証範囲					 	 	 51

安全上のご注意

警告!本機を使用される際には必ず以下の内容を確認し、適切な使用方法 でお使い下さい。

11

.

警告! 付属のアダプター以外はお使いにならないで下さい。異なる アダプターの使用は、機器の損傷、火災、感電の危険につながります。
警告! 火災、感電の危険を避けるために。

アダプタの規格と異なる電圧で使用しないでください。

他の機器と、コンセントを共用しないでください。

コードを付け替えたり、過度に曲げる、強く引っ張ったりしないで下さい。

コートを傷つけたり、重いものを載せたり、高温の製品の近くで使用しないで下さい。

- 濡れた手でアダプターに触らないで下さい。
- 内部が露出したりショートするなど、コードが著しく傷ついた場合は、弊社に ご連絡ください。
- 警告! 測定対象の光ケーブルを接続する前に、OFL280レーザーを発振させた り、テストを実施しないでください。
 - 警告! 深刻な眼科障害を避けるため、光ファイバーのネットワーク装置、 テスト装置、パッチュード、テストジャンパーの光出力部分は直視しないで ください。光システムを操作する場合は、貴社の安全手順に従って ください。
 - 注意: 0FL280 0TDRには、光ポートの洗浄、バッテリー交換のための部品以外は 交換部品はありません。修理、校正は弊社にて承ります。
 - 重要: 本品は精密機器ですので、十分に気を付けてご使用下さい。 コネクタに傷や汚れがありますと、測定性能に影響します。 お使いにならないときは、必ず防護カバーをご使用ください。

セクション 1:

本マニュアルでは、OFL280 OTDRを使った光ファイバーネットワークのテスト 実施法と、OFL280 OTDRの使用・メンテナンスに関する基本について説明 します。

OFL280 に関するご質問、推奨部品、技術的なサポートが必要な場合は 弊社ご相談窓口までお問合せ下さい。

お客様ご相談窓口

オプトワークス株式会社

〒141-0022

東京都東五反田4-10-9シャトレ五反田8F-5

HP:http://www.opto-works.co.jp/

mail:sakamoto@opto-works.co.jp

電話:03-3445-4755

Section 2:

0FL280 モデ^{*}ル

各モデルは、次の目的においてご使用いただけます。

モテ゛ル	波長(nm)	
0FL280-102	1310/1490/1550	FTTh OTDR:FTThPONネットワークで使用される 3波長における損失を計測します。
0FL280-103	1310/1550/1625	FTTト (ライブファイバー) OTDR:1625mnのテスト を実施する際に必要なフィルタは付属します。 1490/1550nmを計測するためのPONパワーメーターも付属 します。

OFL280の型番の各部分は、モデルの種別、OTDRポートのフェルール形状、及び言語を示します。

OFL280-102 FTTh OTDR

3 波長 (1310/1490/1550 nm) OFL280-102 OTDRは、ネットワーク におけるダークファイバの 不具合箇所を検出します。

可視赤色光源(650 nm)

OFL280-103 FTTh OTDR

An OFL280-103 OTDR モデルは、3波長(1310/1550/1550) で測定を実施できます。 ライブファイバが検出された場合、自動的にフィルターを介した1625nmのモードに 切り替わります。

推奨部品

OFL280と検査対象ファイバを接続するには、ジャンパーケーブルが必要です。 ジャンパケーブルは測定対象のファイバと同じコア径、クラッド径である必要があります テストケーブルの一方のコネクターは、OFL280の測定ポートに接続し、もう一方のコネクタ は、検査対象の光ファイバと接続してください。 測定対象の光ケーブルの損失と反射を計測する場合、近端側、終端側の両方にラウンチ ケーブル、レシーブケーブルを接続する必要があります。Noyes社ではこれらの ケーブルをコンパクトにパッケージ化したファイバリスク等の取り扱いもしておりま

9 0)	C.	御筃心刀	いめりま	したら、	とつて	てお问い	言せ 下ろい	۰,
------	----	------	------	------	-----	------	--------	----

用途・目的	適合部品	
	OTDRを検査対象 ファイバに接続	検査対象ファイバ の終端箇所
・障害の検出(切断点の検出) ・リンクの長さの計測	テストジャンパー (1-2m タイプ)	必要なし
 ・近端コネクター損失と反射の計測 ・終端コネクター損失と反射の計測 	ラウンチケーブル	* 必要なし
 ・近端コネクターロスと反射計測 ・遠端コネクターロスと反射計測 ・測定対象区間の損失と反射計測 	ラウンチケーブル*	レシーブケーブル *

* Noyes 150 m ファイバリング 等

Section 3: 本体上部図

本機側面部 (USB、電源ポート)

前面パネル(ボタン・画面について)

The 0FL280 の前面パネル上のボタン、ランプ、ディスプレイについて説明します。 パネルには電源、メニュー、テスト実行、戻る、保存、可視光の各ボタンが配されて おり、その他機能ボタン、矢印ボタンを使ってディスプレイに表示されるメニューを選択します。 機能ボタンの各機能については「0FL280 のボタンについて」のセクションでご説明します。

7

0FL280 の各ボタンについて 各ボタンの機能は下記の通りです。

ボタン	名称	機能
	電源ボタン	約1秒間長押しして 電源の入/切をします。
	赤色光 ボタン	入 -約2秒間長押しします。ボタン横のランプが点灯 切 -約1秒間長押しします。ボタン横のランプが消灯
	メニュー ボタン	メインメニューを表示します。
	左右タブ ボタン	メニュータブやテストタブの画面の切替ができます。
	矢印ボタン	 矢印ボタンには、いくつかの機能があります。 メインメニューで:メニューから選択し、設定条件等を変更します。 トレースページで: ズームモードの場合、ズームの調節をします。 ムーブモードの場合、左右にカーソルを移動します。

	選択 ボタン	 選択ボタンには、いくつかの機能があります。 メインメニューでは:サブメニューを表示します。 (表示されない場合もあります) トレース画面では:A、Bのカーソルを切り替えます。
	戻る ボタン	ー回押すごとに前に表示されたページに戻ります。 複数回押すと、メインメニューに戻ります。
	テスト ボタン	テストを開始、或いは中止します。
	保存 ボタン	現在表示中のテスト結果を保存します。
\bigcirc	機能 ボタン	各ボタンの上に表示される画面上の機能を実行します。 ボタンを押し、現在画面に表示中の機能を実行できます。

表示画面

メニュー画面

セクション 4: 設定方法

測定モードの選択

- OFL280 OTDRは様々な測定モードを選択できます。全自動、終端検知、リアルタイム、詳細設定、光源とパワーメーター、FTThパワーメーター(~103モデルのみ)の各モードから選択して
- ください。設定が変更された場合、測定モードも自動的に変更されます。

各設定モードの概要は以下の通りです。

モード	概要
全自動 Full Auto	OTDRの操作に慣れていない方におすすめします。 OTDRの各パラメーター(測定範囲、フィルター、パルス幅、 アベレージング)は自動的に設定されます。イベントテーブル と、測定情報ページが含まれます。
終端検知 End Locate	全自動モード同様、終端検知モードにおいてもOTDRの設定を自動で行います。イベントテーブルの表示が終端検知の表示に変更 されます。
リアルタイム Live	リアルタイムの障害対処にもっとも適したモードです。 波長を設定し測定を実施します。
詳細設定 Expert	作業に慣れた方向きのモードで、詳細の設定だできます。 測定範囲、フィルタ有無、パルス幅、平均化の各設定を手動で (Auto Setup=Off) もしくは自動で (Setup=By Range)行えます。
光源と パワーメーター	光源/パワーメーターとしてご利用頂けます。

モード	概要
FTThパワー メーター	FTTh ネットワークのダウンストリームのパワーレベルを計測

テストモードの選択

- 1. メニューボタンを押してメインメニューの[Mode]タブを表示してください。
- [▲▼]ボタンを押して、測定モードを選択してください。
- 選択ボタンを押して、選択したテストモードのサブメニューを表示してください。
 このサブメニューから、
 - . [▲▼] ボタンを使ってパラメタを選択します。
 - [◀▶]ボタンを使って、パラメタを切り替えます。

OTDR テストパラメタ

パラメタ	
範囲	[Range] パラメタは、最大(拡大していない)トレース範囲 を決定します。同様に[Resolution]はトレースのデータポイント 間の距離を決定します。範囲が広いほど、データポイントの間隔も 広くなります。 被検ファイバより長い、最小範囲の[Range]を選択することを お勧めします。たとえば、1.5Kmのファイバをテストする際には 2.5Kmを選択してください。 [Range] [Resolution] <4 km (13123 ft) 0.25 m (0.82 ft) 8 - 16 km (26246 ft) 0.5 m (1.64 ft) 16 - 32 km (52493 ft) 1 m (3.28 ft) ≥ 32 km (104986 ft) range/ 1600 m (range/ 5249 ft)
フィルター	ファイバが長い場合は、テスト時にフィルターボタンをONにする 必要があります。1マイクロ秒以上の幅のパルスを使用する場合は、 フィルターをONにしてください。[Filter]をONにすると、トレースの 荒さをおさえることが出来ます。
パルス	OFL280 では、異なるパルス幅を使って操作できます。短いパルス幅では、 最短イベントとデッドゾーンの減衰を表示します。長いパルス幅では、 長いファイバをテストする際に必要な測定範囲を表示します。 測定可能なパルス値:5,10,30,100,300ns,1,3,10us

パラメタ	
平均化 Averaging	平均化 パラメタは、計測時間を設定し、トレースの平均化のサンプル 数を決定します。測定時間が長いほど、トレースはスムーズになります。 平均化パラメタで可能な値 : 5, 10, 30, 60, 90, 180 sec.

全自動モードの設定

全自動モードでは、計測レンジ、フィルタの有無、パルス幅、平均化等の設定は 自動で行い、テストを実行する波長のみ設定します。

- 1. 全自動画面のサブメニューから[▲▼]ボタンを使って[Wavelength]を選 択します。
- 2. 【●】ボタンで1波長、2波長、3波長計測のいずれがを選択します。

終端箇所検知モードの設定(End Locate Mode)

全自動モード同様、終端箇所検知モードにおいてもOTDRの設定は自動でおこなわれます が、イベント画面に代わって、終端箇所検知画面が表示されます。

ユーザーが選択した、測定単位に基づいた終端位置を表示します。終端画面は テスト開始後に表示されます。

リアルタイムモードの設定 (Live Mode)

リアルタイムモードでは、 設定不要[Off] あるいは 測定範囲設定[By Range]を選択します。

- [0ff]を選択した場合:自動設定Auto Setupを[0ff]に選択すると,測定範囲、 フィルタの有無、パルス幅等を設定できます。Averaging平均化は自動設定されます。
- ・ [By Range]を選択した場合:自動設定を[測定距離にて設定By Range]した場合、 測定距離を設定できます。フィルタの有無、パルス幅、平均化の設定内容は自動的に設定 されます。
- リアルタイムモードの設定
 - 1. [Live] モードのサブメニューから、[▲▼] ボタンを使って選択します。
 - 2. 【◀▶】 ボタンを使って、パラメタを切り替えます。

詳細設定モード

|詳細設定モードでは、自動設定Auto Setup[Off] あるいは [By Range]に設定します.

- [Off]に設定した場合: [Auto Setup]を [Off]に設定した場合, [Range], [Filter]
 [Pulse], [Averaging] パラメタを設定できます。
- [By Range]に設定した場合: [Auto Setup]を[By Range]に設定した場合, [Range]
 パラメタを設定できます。[Filter], [Width], [Averaging]の各パラメタ

は、自動設定されます。

詳細設定パラメタの設定

1. [Expert] モードのサブメニューから [▲▼]ボタンで、テストするパラメタを選択。

2. [◀▶]ボタンを使ってパラメタを切り替えます。

イベントメニューの設定

全自動測定、終端箇所検知、詳細設定測定の全ての測定モードでイベントの設定をすることができます。

- 初期設定では、全自動測定[Full Auto] モードにおいてイベントは自動設定されています。
 [Thresholds](閾値)は、デフォルトか[User](ユーザー設定)を選択できます。
- 詳細設定モードでは イベントは 自動設定 [Auto] か設定オフ[Off]に切替可能です。
 [Auto]に設定されている場合, [Thresholds]閾値はデフォルトかユーザー設定 のいずれかを 選択できます。
- 全自動・詳細設定モードにおけるイベントの閾値

閾値	最小値	初期設定値	最大値
終端損失值, dB	1.0 dB	3.0 dB	6.0 dB
イベント損失値 dB	0.02 dB	0.10 dB	2.00 dB
イベント反射量 dB	-10.0 dB	-50.0 dB	- 65.0 dB

終端箇所検知モードでは、[Events] はEndLocate(終端箇所検知)に設定されています。 [Thresholds]閾値は [Default]初期値か [User]ユーザー設定の何れかを選択できます。

閾値	最小値	初期設定値	最大値
イベント損失, dB	1.0 dB	3.0 dB	6.0 dB

イベントメニューの設定

1.メインメニューから [<□ c>] タブボタンを使って [Event] ページを表示します。 2.表示された [Event] ページから [▲▼] ボタンでパラメタを選択します。

3. 【◀▶】 ボタンで、選択します。

ファイバメニューの設定

ファイバメニューでは、[Fiber Type] (ファイバの種類) パラメタ

- を [Default]初期値か[User]ユーザー設定の何れかから選択できます。
 - [Default SMF-28e]: 初期設定指数(屈折指数)と、 BC値(後方散乱)を、
 SMF-28e同等のファイバ仕様に設定します。
 - [User]: 屈折率と、BC値を自由に設定できます。

注釈:

- · 通常は、デフォルト値を使用して測定することをお薦めします。
- ・ [User]ユーザー設定でファイバの設定内容、後方散乱値を変更するのは 被検ファイバの規格がデフォルト値のSMF-28eの値と著しく異なる場合に使います。

ファイバの設定

- 1. メインメニューから、「<コ c> タブボタンを使って[Fiber] 画面を表示します。
- [Fiber] 画面から、
 [▲▼] 矢印ボタンを使って選択します。
- 3. [◀▶]設定矢印ボタンで、切り替えます。

ケーブルの設定

注:測定対象のファイバーリンク間において、近端・終端側のコネクタにおける 挿入損失と反射ロスを計測するにはラウンチケーブル(近端側)とレシーブケーブル (終端側)を使用する必要があります。

ラウンチケーブル/レシーブケーブルの設定方法

1. メインメニューから、[<コ c>] タブボタンを使い、[Cable] 画面を表示します。

2. 表示された[Cable]画面から、[▲▼] 矢印ボタンを使い、パラメタを選択します。

3. [◀▶] 矢印ボタンを使い、設定を変更します。

メインメニュー: 一般的な設定内容画面 (General setting)

メインメニューでは、測定表示距離単位の設定ができます。 距離の単位設定は、現在の、或いは保存されたテスト結果の表示に反映

正確の単位設定は、現在の、気いな体子で化たアスト相来の表示に及されます。

又、このページから時間とデータの設定ができます。

本機を使用開始するに際して、時間とデータを設定する必要があります。

距離単位の変更は、現在表示しているテスト結果、及び以後のテスト結果に反映されます。

2. 次に、 [▲▼]ボタンを使って、設定する項目を選択します。

3. [Distance units]距離単位 ▲▶]ボタンを使って、選択します。

4. [Date & Time]日時設定:選択ボタンを押してサブメニューを表示します。

· [****]

「 【●】] 矢印ボタンを使って設定内容を切り替えます。

ソフトと機器のバージョン

1. [<コ c>]タブボタンを使ってメインメニューのタブから[About]を表示します。

- [OFL280 Version]を選択するとソフトウェアのバージョンが表示されます。
- · [Optic Version] では、機器のバージョンが表示されます。

光源とパワーメーターの設定

光源の操作

光源とパワーメーターのテストモードを起動するか、[Laser]をOnにした後、 レーザーを約5分間運転させて光源を安定化してください。

- [▲▼]ボタンを使って、光源設定内容を選択します。
- [◀▶] ボタンを使って、設定内容を切り替えます。
 - · 現在の光源レーザーをOn, あるいはOffにします。
 - ・ 光源を CW (連続光), 1 kHz , 2 kHzのパルス光あるいは Wave ID 操作に設定します。
 - 光源を、使用する波長に設定します。

パワーメーター操作

- 1. [Ref/Set] ボタンを数秒長押しするとリファレンス値(dBm)を表示することができます。 その後画面はdBモードに戻ります。
- 新たにOPM 参照レベルを設定するには、[Ref/Set] ボタンを、 REFERENCE [SAVED] の文字が表示されるまで押し続けてください。この作業には1秒ほどかかります。
- 3. [Ref/Set] ボタンから手を離すと、現在の損失値 (dB)が表示されます。
- [Test]ボタンを押すと、リアルタイムの光レベルあるいは損失値の表示 固定することができます。表示値が固定されている間、POWER [STOPPED] あるいはLOSS[STOPPED]を確認できます。
- 5. 再度テストボタンを押すと、現在のデータ表示に戻ります。

24

FTTx パワーメーターモード (0FL280-103 モデルのみ)

操作

FTTh パワーメーターテストモードでは、 0FL280-103 0TDRは、 450nm,1550nmのFTTx パワーレベル計測を致します。 全ての 0TDR テストモードにおいて、 0FL280-103 0TDR は下記の検査を実行します。

・トラフィックが検知された場合、次の画面が表示されます。

セクション 5: テストの実行と測定結果の表示

テストの開始と終了

テストの開始

テストの終了

· (✔) - テスト実行ボタンを押します。トレースが表示される前に押すと、 テストを終了し、設定画面に戻ります。 トレースが表示された後に押すと、 テストを終了し、部分的に完了したトレースを表示します。

テストが継続中のときは。

OFL280 のページのヘッダー部分に、 [Testing] と表示され, テストの進行状況が 示されます:

テストが終了したときは。

ページのヘッダー部分に、[New Trace] と表示されます。

テスト結果の表示

テスト結果は、3種類の異なる画面で表示されます。 それぞれの画面では、現在、あるいは保存されたテスト内容を表示します。 各ページは、該当するページタブを切り替えて表示します。

ページタブを切り替えるには、 (4) (4) タブボタンを使います。

各画面の、テスト結果表示について:

タブ	名称	説明
۲	トレース	OTDRトレース, A/B カーソル, A/Bカーソル間の 距離、ロス、反射ロスを表示します。
	イベント テーブル	ユーザー設定の計測単位、反射、挿入ロス (dB)におけ るOTDRトレースとイベントデータを表示します。
i	インフォメー ション	OTDR設定パラメタ, ラウンチケーブル、レシーブケーブル のデータ、イベントデータを表示します。

詳しくは "トレースページについて", "ズーム調整について", "イベントテーブル について", "インフォメーションについて"の各項目を参照してください。 28

トレースページの表示について

番号	表示	説明
1	トレース	挿入損失と距離を表したグラフを表示になります。垂直軸は、 ロス (dB)を、水平軸は、距離(表示単位切替可能) を示します。
2	カーソル	損失値と距離の計測に使用します。カーソルの移動は、矢印 ボタン [◀▶] を使い、 ④ -選択ボタンで、 A/Bカーソルを切り替えます。現在選択されているカーソル は赤色で、選択されていないカーソルは黒色で表示されます。
3	カーソル データ欄	A、Bカーソルの位置、両カーソル間の距離が表示されます。
4	テスト データ欄	Aカーソルにおける後方散乱のレベル, A-B間における損失、 最大反射量を表示します。
5	[Zoom] / [Move] ソフト ボタン	[Move] モードと[Zoom]モードの切り替えができます。[Move] モードでカーソルを移動し、[Zoom]モードで垂直軸と水平軸の表示調整 ができます。[Move]モードでは、ソフトボタンは [_ Zoom]と表示さ れます。[Zoom]モードでは、[X Zoom] と表示されます。

番号	表示	説明
6	波長	表示中のトレースにおけるテスト波長を表示します。 複数の波長計測の場合は [Wave] ボタンを押して、 各波長におけるテスト結果表示を切り替えられます。 注 :現在表示されている波長は赤色で表示されます。
7	ファイル名	表示中のトレースのファイル名を表示します。トレースが 保存されていない場合は [New Trace]と表示されます。
8	バッテリー 表示	バッテリー残量は以下のように表示されます。
		■■■■ 黒色 - バッテリーは充電が必要です。
9	画面アイコン	現在選択されている画面のアイコンが反転表示されます。
10	FPO	黄色のエリアはフロントパネル補正値 (FPO)を表示します。 FPOはトレースの始点からOTDRまでの距離で、 OFL280の場合、通常は10mになります。
11 :	最初のイベン	トOTDRのフロントパネルにおけるイベントを表示します。
12	ユーザー オフセット	灰色のエリアは、ラウンチケーブルの長さを表示します。 、
13	イベント	被験ファイバーの最初のイベントを表示します。

イベントテーブルについて

イベントテーブルは、[Full Auto]全自動モード、 [End Locate]終端箇所検知モード [Expert]詳細設定モードを選択した場合、常に表示されます。

- 1. [Full Auto]全自動モードと[End Locate]終端箇所検知 モードでは, [Events] は初期設定では [Auto]に設定されています。
- 2. [Expert]詳細設定モードでは、イベントメニューは[Auto]に設定してください。

イベントのアイコンとタイプについて

アイコン	タイプ	説明
←	開始	被験ファイバーの測定開始点
	終了	被験ファイバーの測定終了点
	反射 イベント	計測可能なロス,及び反射を含むイベント。接続箇所 メカニカルスプライス部に原因があることが多いです。
	無反射 イベント	計測可能なロスを含むイベントだが、反射は僅少、あるいは 計測不能。ファイバーの屈曲/融着部に表示されることが多いで
	上昇線	'負のロス'を含むイベント。 OTDR トレースにおいては、 後方散乱係数の非常に異なるファイバーを接続、融着した 場合に起こります。上昇線は、反対側から検査を実施す と正のロスを含むイベントが通常生じます。 上昇線から発生するロスの値は、ファイバーの 両側から計測した損失の平均値にほぼ等しくなります。
MA	複数の イベント	イベントが短い距離に複数あり、お互いに接近していて OTDRにより個別に計測できない場合に表示されます。 (例:短いジャンパ-の始点・終点) 複数のイベントの損失は、複数のイベント損失量の 総計となります。

インフォメーション画面について

OFL280 のインフォメーション画面は、すべての計測条件が表示されます。

- テスト終了後に、イベントテーブル内の屈折率とラウンチケーブルの内容を 変更することができます。
- ・ [CALCEVENT]ボタンを押して、計測基準を変更し、再計算することができます。

セクション 6:テスト結果の保存と表示

ファイルの管理

The OFL280 のファイル管理は次の3つの画面から実施します。

ページの名称	説明	機能
フォルダ	内部メモリに保存された フォルダのリストを表示します。	表示するフォルダの選択、削除を 行います。
ファイル	現在のフォルダに 保存されたファイルの リストを表示します。	以前保存されたテスト結果の表示、 削除、ファイルのコピーを行います。 現在表示されているテスト結果を 既存のフォルダに保存します。
ページ保存	現在のフォルダ名とファイル 名を表示します。	現在表示されているテスト結果に 名前を付けて保存します。

ファイル管理ページを表示するには、メインメニューの[Files]ボタンを押します。

ファイルの管理一フォルダ

フォルダ 画面を表示するには:

- ファイルfileのソフトボタンを押します.
 フォルダあるいは ファイルの画面が開きます。
- ファイル 画面が開いた場合は、 1 のマークが表示されます。

選択ボタンを押して、フォルダ 画面を表示します。

ファイル管理一ファイルページ

ファイル画面を表示するには:

- ファイルのソフトボタンを押します。,
 フォルダあるいはファイル画面が開きます。
- フォルダ 画面が開いたら、表示されたフォルダのリストから選択します。
- 選択ボタンを押して選択したフォルダを開き、ファイルページを開きます。

ファイル管理 - ページ保存

[Save As] 画面から、現在のテスト結果の保存と、必要に応じて新規フォルダの 作成が可能です。

- 1. [Save As] ページを開くには、 [Save] ボタン又は、 [Save As] ソフトボタンを押します。
- [Save As] ページが表示されたら,[◀▶] 矢印ボタンでフォルダ名、あるいはファイル 名を選択します。
- 3. [▲▼] ボタンを使って、文字を選択します。
 - · フォルダ名がすでに存在している場合、[Save]保存ボタンを押すと、現在の テスト結果が上書き保存され、フォルダは更新されます。
 - ファイル名が現在のフォルダ内にすでに存在している場合、[Save]ボタンを押すと、"Overwrite file?"(上書きしますか?)と表示されます。[Cancel]ボタンを押すと保存作業は中断され、[Yes]ボタンを押すとファイルは上書き保存されます。
 - ・フォルダ名を新しい名前に編集し [Save] ボタンを押すと、新しい名前のフォルダ が作成されます。 注:これは、新しいフォルダを作る唯一の方法です。

ページ保存を新規フォルダを作成するには:

新しいフォルダは、ファイル管理の [Save As] 画面で作成します。'ページ保存' のセクションをご参照ください。

特定のフォルダを開くには:

- 1. ファイル管理の、フォルダページを開きます。
- 2. [▲▼]矢印ボタンを使って、フォルダを選択します。
- 3. 選択ボタンか、 [Open] 開くのソフト ボタンを使って、フォルダを開きます。

測定結果を保存するには:

測定結果は、 OFL280 の内蔵メモリに.SORの拡張子で保存されます。ファイル は、 付属の解析ソフトを使用し、パソコン上で確認、印刷、解析することが出来ます。

測定結果を既存のフォルダに保存するには:

測定結果を既存のフォルダに保存する場合には、次の手順に従ってください。

- 1. 測定終了後、[Save] ボタンを押して[Save As]画面を表示します。
- 表示された[Save As] 画面の [Save]ボタンを押して、現在表示されているフォルダ、 ファイル名で保存します。

測定結果を新しいフォルダに保存するには:

測定結果を新しいフォルダに保存するには、ファイル管理の [Save As] 画面を使います。

1. テスト終了後、 [Save]ボタンを押して [Save As] 画面を表示します。

40

2. ファイル名、フォルダ名を編集します。

'ファイル管理 - ページ保存'のセクションをご参照ください。.3. 作業が終了したら、[Save] ボタンを押します。

ファイルを開くには: (保存したテスト結果の表示)

1. ファイル管理の[Files]ファイル画面を開きます。

[▲▼] 矢印ボタンを押して、ファイルを選択します。

3. [Open] 開くボタンを押して、テスト結果を表示します。

ファイル、フォルダを削除するには:

1. ファイル管理の ファイル / フォルダ画面を開きます。

2. [▲▼] 矢印ボタンを押して、ファイル、フォルダを選択します。

3. [Delete]ボタンを約1秒間長押しして、選択したファイル、フォルダを削除します。

パソコンにファイルを転送するには:

OFL280 からパソコンにファイルを送るには、 USB ケーブルを使います。

1. タイプA あるいはミニ USB B ケーブルを使い、OFL280とパソコンを接続します。

2. [USB] ボタンを押してください。

3. パソコン上で、My Computerを開いてください。[OFL X:]という新しいリム—バブル

ドライブが表示されます。 'X:' が、OFL280に割りあてられたドライブ名です。

- 4. [OFL X:]の下に、[RESULTS]と、[SOFTWARE]という二つのフォルダが表示されます。
- 5. [RESULTS] フォルダを、パソコンにコピーしてください。
- 6. [RESULTS] フォルダの下に、 [TRACES] フォルダが表示されます。
- 7. [TRACES] フォルダの下に、トレースを含む全てのフォルダが表示されます。

注:

接続したUSBケーブルを抜く前、あるいはUSBページの [Cancel] ボタンを押す前には、 パソコンのメニューバーの '安全なハードウエアの取り外し' のアイコンをクリックし、 [USB デバイスの安全な取り外し - Drive (X:)] メッセージをクリックしてください。 'X' には、OFL280に割り当てられたドライブ名が表示されます。

セクション 7: メンテナンス

洗浄

テストケーブルと 検査に使用するファイバコネクタの洗浄をするには:

正確な計測と操作のため、コネクターの先端は、常に汚れやほこりを取り除く必要 があります。送受信ケーブルのコネクタ部、被検ケーブルのコネクタ部分 の洗浄が重要です。適切な光コネクタ洗浄手順に従ってください。

光ポートの洗浄

- 注意! 次の作業を行う前に、必ずOFL280の電源を切ってください。 SM OTDR :
- アダプターの土台を4回ほど左に回します。
- アダプターを直接取り外します。

VFL Port:

 アダプターを左回りに回して開けます。アダプターを取り外すと、 フェルールが現れます。

フェルールの洗浄(二つの方法)

I. Noyes社製品を使った洗浄手順	 イソプロピルアルコールを使っての洗浄手順
 FCC2 の缶を30度に傾け、FCC2の ボタンを押して容器に洗浄液を貯めて下さい。 CCTPスティックをFCC2 の容器に 浸し、洗浄液で湿らせます。 湿らせた先端をフェルールに付け、 先端を右回りに10回回し、 洗浄します。 CCTP スティックは、両端を使い 終わったら捨ててください。 	 汚れていない、純度99%以上の IPAを使ってください。 ほこりのついていない光学機器 洗浄用のパッドをアルコールに 浸し、フェルールを拭いてください。 さらに、新しいパッドで 拭きとってください。

アダプタの洗浄

- エア缶を使います。缶を垂直に持ち、アダプターの汚れ を吹き払います。
- ・ 作業が終了したらアダプタをフェルールにかぶせ、ピン位置を確認します。
- · アダプターの土台をしっかりと締めます。

バッテリーの充電

OFL280は、ACアダプターに接続されている間は、電源がON/OFFにかかわらず充電されます。

- ACアダプターをコンセントにつなぎます。
- ACアダプターを本機の側面の電源ポートにつなぎます。
- ・ 電源ランプが赤色に点灯します。
- ・ 電源ランプが緑色になるまで充電してください。

修理と校正

内部の解体、修理は保証対象外となりますので、ご注意下さい。 3年ごとの校正を推奨いたします。ANSI/NCSL Z540-1, ISO 10012-1, MIL STD 45662A, ISO ガイド 25 及び規格・技術協会の指針に

基づいて校正作業を実施します。

バージョン情報の確認

メインメニューから [<っ c> タブボタンを使って [About…]メニューを開き、OFL280ソウエアのバージョンを確認します。

よくあるご質問

- 測定後にトレースを確認する為に保存できますか?
- =できます。 [Save]ボタンを使って保存した後、ファイル、フォルダ名を設定できます
- 新しいフォルダを作成できますか?
- =できます。[Save]ボタンを押し、新しいフォルダ名を入力します。入力後、再度[Save] ボタンを押します。
- リアルタイムモードの目的はなんですか?
- ラウンチケーブルと一緒に使用し、複数の短いファイバリンクをすばやく確認 表示することができます。
- なぜラウンチケーブルとレシーブケーブルが必要ですか?
- ラウンチケーブルは 最初のパルスの後、OTDR の波形の反射が元のトレースに戻り 測定対象の最初のコネクタ損失を検出する為に必要となります。
- この逆に終端側のコネクタの損失を検出する為にレシーブケーブルが必要となります。

仕様

OTDR	
エミッター種別	レーザー
安全クラス	クラスI FDA 21 CFR 1040.10 and 1040.11, IEC 60825-1: 2007-03
ファイバ種別	SMF
対応波長	1310/1490/1550/1625 nm (モデルにより異なります)
許容波長	$\pm 20/\pm 20/\pm 20/\pm 10$ nm
ダイナミックレンジ(SNR=1)	30/30/28 dB
イベント デッドゾーン	1.3 m
アッテネーションデッドゾーン@ 5ns typ. 5.0 m, max 6.0 m	
パルス幅	5, 10, 30, 100, 300 ns, 1, 3, 10 µs
範囲設定	250 m to 256 km
データポイント	16,000以上
データポイント間隔	12.5 cm(範囲 < 4 km) 範囲/16000(範囲 > 4 km)
屈折郡指数 (GIR)	1.4000 to 1.6000
不確定距離(m)	土(1 + 0.005% x 距離 + データポイント間隔)

以下の仕様は、 25°C あるいは特に別記されている温度下で有効です。 各仕様は、予告なく変更される場合があります。

47

トレースファイルフォーマット	Bellcore GR-196 V.1.1	
トレースファイル保存メディア	内部メモリー (>1000 トレース)	
PCへのデータ転送	USB cable	
OTDR モード	全自動測定モード、終端検知モード、リアルタイムモード	

PON パワーメーター		
測定波長	1490, 1550 nm	
検出器の形式	InGaAs	
分離性	> 40 dB	
測定範囲	+23 to - 50 dBm	
精度 1	± 0.5 dB	
解像力	0.01 dB	
測定単位	dBm or watts	

1. 校正波長、パワーレベルは1550nmにおいて約 -5 dBm 、1490nmにおいて約-10 d Bmの場合

パワーメーター		
校正波長	1310, 1490, 1550, 1625, 1650 nm	
検出器の形式	InGaAs	
測定範囲	+23 to - 50 dBm	
トーン信号検出範囲	+3 to -35 dBm	
波長ID 検出範囲	+3 to -35 dBm	
確度 1	± 0.25 dB	
分解能	0.01 dB	
測定単位	dBm / watts	

1. 校正波長、約-10 d Bmのパワーレベルの場合

可視光レーザー	
エミッター種別	Laser
安全クラス	クラス II FDA 21 CFR 1040.10 、 1040.11, IEC 60825-1: 2007-03
波長	650 nm
出力(公称値)	0.8 mW (SMF-28)

レーザー光源	
エミッター種別	Class FDA 21 CFR 1040.10 、1040.11, IEC 60825-1:2007-03
ファイバ種別	SMF
対応波長(nm)	1310/1490/1550 or 1310/1550/1625
波長公差	± 20, ± 10 nm @ 1625 nm
スペクトル幅 (FWHM)	5 nm (最大値)
信号種類	1 kHz, 2 kHz, CW
波長ID (1,2,3波長)	Noyes社パワーメーター、光源で互換性があります。
出力安定性	< ± 0.25 dB (15 秒運転後)
出力	- 3 dBm

外形	
寸法(内寸)	19 x 11.2 x 4.7 cm (7.5 x 4.4 x 1.9 in)
重量	0.8 kg (1.7 lb)
動作時温度	-10 to $+50^{\circ}$ C, O to 95% RH
保管時温度	-20 to +60° C, O to 95% RH
電源	充電式 Li-Ion / AC adapter
バッテリー持続時間	12 時間(OTDR モードでバックライト点灯時)
ディスプレイ	LCD, 320 x 240, 3.5 inch (89 mm), color
OTDR 、 OPM ポート	切り替え可能。

保証範囲

1年間保証

- Noves社の検出機器、その他製品は、
- 出荷された時から1年間
- 保証されます。
- 保証期間内に不具合が生じた場合は、
- 修理・交換に応じます。
- どのような場合におきましても、
- 当初のご購入金額を越えた保証は
- 致しかねますのでご了承ください。

保証除外

以下の原因により生じた不具合に 関しましては保証は適用されません。

- 当社が推奨する以外の修理、校正
- ・ 誤った使用法、事故

CF インフォメーション

- 当製品は、EUで定められた検査指針 に従ってデザイン、検査を行っております。

- 仮品について
- 返品ご希望の場合は、弊社までご連絡 ください。

オプトワークス株式会社

〒141-0022

- 東京都東五反田4-10-9シャトレ五反田8F-5
 - HP:http://www.opto-works.co.jp/
 - mail:sakamoto@opto-works.co.jp
 - 雷話 · 03-3445-4755

Thank you for choosing Noyes Test & Inspection

16 Eastgate Park Road Belmont, NH 03220 Phone: 800-321-5298 603-528-7780

603-528-2025

www.AFLtele.com > Products > Noyes Test & Inspection

Fax:

A Division of AFL Telecommunications